Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1868(4): 130568, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38242181

RESUMO

BACKGROUND: The gene expression differs in the nuclei of normal and malignant mammalian cells, and transcription is a critical initial step, which defines the difference. The mechanical properties of transcriptionally active chromatin are still poorly understood. Recently we have probed transcriptionally active chromatin of the nuclei subjected to mechanical stress, by Atomic Force Microscopy (AFM) [1]. Nonetheless, a systematic study of the phenomenon is needed. METHODS: Nuclei were deformed and studied by AFM. Non-deformed nuclei were studied by fluorescence confocal microscopy. Their transcriptional activity was studied by RNA electrophoresis. RESULTS: The malignant nuclei under the study were stable to deformation and assembled of 100-300 nm beads-like units, while normal cell nuclei were prone to deformation. The difference in stability to deformation of the nuclei correlated with DNA supercoiling, and transcription-depended units were responsive to supercoils breakage. The inhibitors of the topoisomerases I and II disrupted supercoiling and made the malignant nucleus prone to deformation. Cell nuclei treatment with histone deacetylase inhibitors (HDACIs) preserved the mechanical stability of deformed malignant nuclei and, at the same time, made it possible to observe chromatin decondensation up to 20-60 nm units. The AFM results were supplemented with confocal microscopy and RNA electrophoresis data. CONCLUSIONS: Self-assembly of transcriptionally active chromatin and its decondensation, driven by DNA supercoiling-dependent rigidity, was visualized by AFM in the mechanically deformed nuclei. GENERAL SIGNIFICANCE: We demonstrated that supercoiled DNA defines the transcription mechanics, and hypothesized the nuclear mechanics in vivo should depend on the chromatin architecture.


Assuntos
Núcleo Celular , Cromatina , Animais , Cromatina/metabolismo , Núcleo Celular/metabolismo , Microscopia de Força Atômica/métodos , RNA/metabolismo , DNA/metabolismo , Mamíferos
2.
Biochim Biophys Acta Gen Subj ; 1866(12): 130234, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36007722

RESUMO

BACKGROUND: Nuclear rigidity is traditionally associated with lamina and densely packed heterochromatin. Actively transcribed DNA is thought to be less densely packed. Currently, approaches for direct measurements of the transcriptionally active chromatin rigidity are quite limited. METHODS: Isolated nuclei were subjected to mechanical stress at 60 g and analyzed by Atomic Force Microscopy (AFM). RESULTS: Nuclei of the normal fibroblast cells were completely flattened under mechanical stress, whereas nuclei of the cancerous HeLa were extremely resistant. In the deformed HeLa nuclei, AFM revealed a highly-branched landscape assembled of ~400 nm closed-packed globules and their structure was changing in response to external influence. Normal and cancerous cells' isolated nuclei were strikingly different by DNA resistance to applied mechanical stress. Paradoxically, more transcriptionally active and less optically dense chromatin of the nuclei of the cancerous cells demonstrated higher physical rigidity. A high concentration of the transcription inhibitor actinomycin D led to complete flattening of HeLa nuclei, that might be related to the relaxation of supercoiled DNA tending to deformation. At a low concentration of actinomycin D, we observed the intermediary formation of stochastically distributed nanoloops and nanofilaments with different shapes but constant width ~ 180 nm. We related this phenomenon with partial DNA relaxation, while non-relaxed DNA still remained rigid. CONCLUSIONS: The resistance to deformation of nuclear chromatin correlates with fundamental biological processes in the cell nucleus, such as transcription, as assessed by AFM. GENERAL SIGNIFICANCE: A new outlook to studying internal nuclei structure is proposed.


Assuntos
Núcleo Celular , Cromatina , Humanos , Núcleo Celular/genética , Dactinomicina , DNA , Microscopia de Força Atômica , Células HeLa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA